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I. INTRODUCTION 

In a recent paper Doria, Frenkel and Taylor’ have discussed a counter- 

example to the non-Abelian Bloch-Nordsieck’ conjecture that if both final-state 

real soft gluons and virtual soft gluons are summed, the IR divergences will cancel 

in the (color averaged) cross section in perturbative QCD. In later papers3 they 

and their collaborators have constructed and analyzed the simpler counter-example 

which is considered here. These counter-examples+ have prompted questions 

concerning the validity of arguments for the factorization and universality of mass 

singularities in hard scattering processes for the latter arguments assumed no 

length cutoff, for example associated with the spatial extent of a hadron, is 

necessary to insure cancellation of IR divergences. 

The purpose of this paper is to show that the simple as2 counter-example 

“q + S + Y* + soft gluons”, with y* a hard virtual photon, is avoided at the cross 

section level if the initial-state is prepared according to the coherent state con- 

structive procedure for the non-Abelian case. This is a perturbative procedure and 

has been developed7’8 in analogy with that used9?10 in the Abelian case. In our 

calculation we adopt the notation and approach, and only extend the analysis of 

Sec. 2 of Andrasi, et3 by including the corresponding IR contributions from the 

initial-states’ part which then gives an IR finite cross section. 

For completeness and to emphasize the assumptions, in Sec. II the coherent 

state approach is reviewed. z%ram rules needed in the present calculation to 

construct the initial-state contributions are listed in an appendix. In Sec. III the IR 

divergences arising from virtual soft gluons in the usual covariant graph are shown 

to be cancelled in the cross section by contributions from the initial-state. This 

t 
Such counter-examples can be shown not to occur for many processes using the 

methods of Libby and Sterman [Ref. 51 and the present counter-example has been 
considered [Ref. 3 1 relative to the Kinoshita-Lee-Nauenberg Theorem IRef. F. 1. . - . - -. _ 
Much of reference I has been checked in reference 4. 
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occurs separately for each toplogical type of covariant graph. Similarly, in Sec. IV, 

the IR divergences arising from final real soft-gluon emission are shown to be 

cancelled in the cross section by contributions from the initial-state. 

II. REVIEW 

The coherent state treatment of the asymptotic dynamics in the infrared 

region of non-Abelian gauge theory is an amplitude approach in perturbation theory 

which is based on the asymptotic behavior of the Hamiltonian operator for 1 t 1 + m 

in the interaction representation. As in the treatment of scattering in an 

unscreened Coulomb potential in quantum mechanics and in the coherent state 

treatment9”’ of the IR region in QED and gravitation, the motivating idea is to 

avoid the IR divergences by rewriting the total Hamiltonian 

H = Ho+HI 

= Has + Hi (1) 

where H,,(t) q Ho + Vas(t) so that H ’ i does vanish sufficiently fast asymptotically 

to avoid IR divergences. Since the quark mass is chosen to be finite, the 

asymptotic Hamiltonian Has(t) does not contain qi creation or annihilation pieces. 

It does include the complete cubic and quartic gluon self-coupling terms. The 

associated time evolution operator, Uas(t), in Schrodinger representation 

idUas(t) 

dt = Has(t)Uas(t) (2) 
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is then used to generate an initial asymptotic states’ space *a, = exp[ -n(t)] XF, 

where t + -m, from the usual Fock space XF. Because of the presence of massless 

gauge quanta, X as is not the free particle basis based on Ho. 

Being asymptotic in origin, the construction of Xas based on Eq. (I) is not 

unique. More significantly, because of the conjectured confinement property for 

QCD which forbids all systems with color-nonsinglet quantum numbers from 

existing as isolated objects, and because of the apparent empirical absence of Van 

der Walls forces, it is not yet clear how physical are the properties of the non- 

Abelian perturbative IR region. tt Unfortunately, we have to “with-hold judgment” 

on this issue for the present analysis will not incorporate such important nonpertur- 

bative long-range effects since we do not know if they are sufficiently well under- 

stood at present to be included. A somewhat similar assumption is necessary in 

Sterman-Weinberg inclusive cross-section analyses. Nevertheless, just as the 

Coulomb phase shift is observable in well-chosen reactions, the IR domain in QCD 

may eventually turn out to be physical despite the presence of nonperturbative 

effects. 

The perturbative solution of Eq. (21 for the asymptotic time evolution 

operator, Uas(tl, can be written as in the usual coherent state operator 

exponentiation (Magnus’ Theorem) 

Uas(tl = exp (-i Hot)Z(tl 

Z(t) = exp [Cd(t)1 , n+(t) = -n(t) 

(31 

(41 

tt We thank Bill Bardeen for emphasizing this point. 
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where Q(t) is given by iterative integrations over an infinite series of Lie elements 

of the asymptotic potential, Vas(t). Equivalently, Eq. (2) can be solved as in time- 

ordered perturbation theory 

z(t) = 1 + fj c-i)“/ t dtlJtl dt2 . . . jfn-’ dtnVas(t,)...Vas(tn) 
n=l 

(5) 

and used to generate the equally-weighted diagrams shown in Figs. 1-5 via the 

definitions ( 1 qF > is in interaction representation) 

I$as> = lim {Z+(t)}1 jl,> 
t-t-m 

Sg(tl, t,) = lim Z+(tl)SD(tl, t2)Z(t2) 
t +- 1 

(6) 

(7) 

t2+-” 

Order by order, Z(t) can be expressed in terms of Q(t). 

Even in the Abelian case9 this is a formal (heuristic) procedure because Z(t), 

when precisely defined, turns out not to be a unitary operator in .;yOF; in fact, - 

1 $I,,> are representations of the canonical commutation rules which are unitarily 

inequivalent to the Fock representation. To specify Z(t), Eqs. (5)-(7), require 

“boundary conditions.” Since the idea is to modify Ho to Has only at large 1 t I, in 

Eq. (5) contributions of the lower end point of integration are dropped* (in the 

Abelian case this assumption is necessary for n(t) to commute asymptotically with 

the total momentum operator)9 . Note that HI is used in calculating the usual 

Dyson S operator, SD in Eq. (7). Also in the Abelian case, in Eq. (4), the Q(t) 

*In Eq. (7) the endpoint for Z(t ), and for specifying initial-states’ space, could be 
chosen as (t2)o = -m and for Z(t $ and for final states’ space, as (t l)o = 
assumption of an +iE prescription to avoid endpoint contributions. 

+3 with the 
An E has been 

displayed explicitly in the present calculation. If E is equal to zero (this was 
done in Ref. 9 in showing the cancellation in the matrix element of the IR 
divergent a(t) contributions to the scattering operator defined by Eq. 7), the IR 
divergences in the cross section still cancel separately for each topological set. 
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perturbative series of integrations over Lie elements truncates and 

n(t) = R(t) + i@(t). It is found that in Eq. (71, R(t) + 0 as It 1 +m, but Q(t) is odd 

asymptotically and, when regularized, cancels the IR divergent Coulomb phase. In 

the present paper on the non-Abelian case we do not consider non-trivial 

generalizations of Q type of terms (c.f. Ref. 81 so we only treat the cancellation of 

the IR divergences in the cross section. However, it is easy to show that the R(t) 

type terms associated with Figures 1-5 vanish in Eq. (7) as t2 + -m. 

For R(t) terms in Eq. (6) in the non-Abelian case we adopt as a working 

“ansatz” the replacement in quark Bremstrahlung terms of 

i k.P t 
azu(k)e PO + a&,(k) = 

m 

where e,,(m)(k) are gluon polarization vectors with i = (a, m, k3 denoting “a” for the 

color gauge-group index, “m” for the spin polarization, and “c” for the on-mass shell 

gluon three-momentum. Similarly, for other terms of Eq. (5) in n-th order, we 

assume 

(operatorsje 
i [E~-E,I t 

+ (operators) 

so 2 t (tl + 2 t and Eq. (61 becomes the time-independent relation 

I$,,> = z+IJIF> 

(9) 

(IO) 

Again, in the Abelian case by working in the complete infinite tensor product space 
11 

of von Neumann, Eq. (8) has been justified and Xas, defined by Eq. (6), has been 
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shown to be t independent and to contain a Lorentz and gauge invariant subspace 

with nonnegative metric. 9 

Accepting this constructive procedure, graphical rules for 1 @as> are easy to 

derive and the ones needed for the calculation to order us2for”q+q+y*+soft 

gluons”, with y* a hard virtual photon, are listed in the appendix. In this approach 

it is not necessary, in order to cancel IR divergences in the cross section, to sum 

over final color spins and to average over initial color spins since each asymptotic 

color-charged particle, e.g. quark or gluon, is accompanied by its associated color- 

singlet set of self-interacting soft gluons.’ 

III. CANCELLATION OF VIRTUAL GLUON IR DIVERGENCES 

As discussed by Andrasi, et al.3 the as2 color and spin averaged cross section 

for “q + 4 + y* + soft gluons” has the form 

+ NCFCYM (11) 

where oB is the Born cross section and, with ta the Hermitian representation 

matrices for quarks, 

Lt, q ‘F1 ’ fabcfabd = ‘YM6cd 

where [ td, tbl = if abctc [‘YM = 0 in Abelian case 1. Following these authors, we 

work in the lab frame of the anti-quark p u = (m; 6), use the Coulomb Gauge defined 

in this frame, and make the eikonal approximation in the contribution from the 

graph part. The graphs contributing to N and responsible for the counter-example 
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to the non-Abelian Bloch-Nordsieck conjecture are labeled with “0” in Figs. 1-5. 

For the cross section, the amplitude for each virtual topological set [a, b, c, d in 

Figs. 1-4 I is to be multiplied by the complex conjugate of the Born amplitude, and 

then the complex conjugate of this product is to be added, followed by the color 

and spin averaging. Notation used in the figures is explained in the caption to Fig. 

1. Note that on-shell particles bridge the initial-state, graph, and final-state parts 

so usage of the Coulomb Gauge reduces significantly the number of diagrams 

associated with contributions from the initial-states’ parts. We do not consider 

here the graphs in which gluons are attached solely to the quark, or to the anti- 

quark line, for such graphs are not responsible for the counter-example. 

In the coherent state approach, cancellation of IR divergences has been found 

to occur separately in each topological set. The first such set, (a), is shown in Fig. 

1. With JZB the Born amplitude, we remove some factors common to each graph in 

Fig. I by writing 

4 
“@ai = -“ICBtbtatbta (2n16 A -Zai ; i : 0,...,3 

As in Andrasi, et al.3 Fig. (a01 gives 

- 
- !M2 / d3kd3,[l -x21k-19,-2[k-K~-‘[L +iel -1 Jz a0 = 

x c-k + K + L + icl -1 

where 

k = j k’ 1 , K = c*q’/q, = 0 kx, . . . 

(12) 

(13) 

(14) 
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and Fig. (al] gives 

/ 
d3kd4!L [ 1 - x21 k-‘L-‘[ a -1 

0 
+ id 

x[-ilo+k+L-K+ic] -‘[-Qo+L+i~]-‘[k-K]-l 

= - -gao 

For (al) in applying graphical rules, one must include factor 

(e(“) 3 Y2 v (k)/[Z(Zn) kol ]u(ql for joining graph and initial-state and also sum over 

(a, I?, $1 gluon indices. Since k is an on-mass-shell gluon, the quark momentum 

following Coulomb gluon, 1, emission is (ql],, 2 (q - “]u and then following i 

absorption it is (q2)u z (q - 9. + k),. Similarly, for Fig. (a2) following < absorption 

(ql],, 2 (q + k)u so we obtain 

2Fa2 = -2 (E-‘-F) 
a0 

(note minus sign from anti-quark incident] and for Fig. (a31 

/ d3kd311 [I - x2]k-111-2[ k - K]-l 

x [L-iE]-‘[-k+I<+L-i?] -1 

SO 

Re [ sa3 1 = -Re [Ui;ia2] 

(15) 

(16) 

(17) 

(18) 
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4 
& bi = -idBtctbtafabc -g”i-zbi i 

(2nf 
i = O,I,Z (19) 

For Fig. CbO), do the so-integration by closing in the lower half-plane and then k. by 

also closing in lower half-plane so 

AZ b0 = d3kd3s [y - x cos JI 1 s-‘k-I[ (s+k)2 I-’ 

x [k-K]-‘[K+S+iE] -1 

with 

k’: = ks cos $ , S = ;.;;/q, = BSY 

Similar to set (a) calculations, 

-1 
.MbI = -!3 / 

d3kd3sty -x cos $11 s-‘k-l [(a)‘] 

x [k-K]- [k+S+iE]-’ 1 

and 

22 
/ 

-1 
b2 = - @ d3kd3s [y - x cos $1 s-lk-’ [&-!?J21 

x [K+S+iCI-‘[k+S+iE] -1 

(20) 

(21) 

(22) 
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so 

Re[ “zbo + -zb, + ‘zb21 = o (23) 

For topological set (c), let 

4 
uKci = -iUKBtctbtafabc LUZci ; 

(2rj6 
i = 0,1,2 (24) 

so 

u2co = - B/d3kd3s [ y - x cos$] s-‘k-l [(ss-+k)2]-1 

x [K+s+i~l-‘[k+S-icl-’ (25) 

For (cl), following absorption of s’ gluon, (q,),, = (q + s’),, so 

uiTcl = -1 
- 8 d3kd3s [y - x cos $1 s-lk-‘[ (s+io’ I 

x [k-Kl-‘[k+S-ir;l-’ 

and for (~2) 

&Kc2 = S 
/- 

d3kd3s [y - x cos $1 s-lk-‘[ (s,k,‘l -1 

x [k - KI -’ [K + S - iEl-1 

(26) 

(27) 
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so 

Re lUZco + -zcl + SC2 I = 0 . (28) 

Topological set Cd) is more complicated for there are 3 energy-orderings of 

the vertices. In Ref. 8, for simple tree graphs it was found that the IR cancellation 

occurs not only for distinct topological sets of each covariant graph, but actually at 

level of each energy-ordered subset of the topological set. Set (d), however, is 

sufficiently simple to directly do standard contour integration of the amplitudes 

associated with the graph part. Letting 

4 
Ctidi = iYfCBtctbtafcba -gCU t2nj6 ” di ; i = 0,...,5 (29) 

for (do), following Andrasi, et3 we obtain 

ZdOA = - 
/ 

du[k+sl-l[K+S+icl-’ 

x [s-K-icl-Ilk-Kl-’ (30) 

where convenient measure is [ it is invariant under $+ -<, ;+ -<, as well as under 

z -:I 

j-h = 0’s d3kd3s [I - x2 - y2 + xy cos $I 1 [(k)‘] 
-I 

k’.; = kscos ~1 (31) 
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‘,ZdOB = X 
s 

du(s-k)k-ls-‘[k +sl-‘[k-K] -’ 

x [k+s-K-S]-1 (32) 

For Cdl) do so-integration by closing contour in lower half-plane. Residue from 

graph parts’ gluon-propagator pole vanishes for asymmetric under sp f-c ku, so 

obtain 

“Kd, = - du[k + sl-‘[k - s + id -‘[k - Kl-’ 

x [k+S+id -I 

We can show 

- 
Re [ “KdOA + JZ~, - 1 =o 

(33) 

by adding complex conjugate amplitude with change of variables ;+ -5 c + -1 and 

then relabeling s ++ k 
u P’ 

For (d21, factor for joining graph and initial-state is 

i ([:y$J (, [;:;:y]% ) u(q) 
and contract two incident gluons in both ways for state; obtain 

(34) 

‘Zd2 = -ZdoB (35) 
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so, up to this point there are no net IR divergences for set (d). 

For (d3) we obtain 

“iTd3 = 4 dp(s - k)k-‘s-‘[ k + s]-I[ k - K]-’ 

x [kcs-K-S]-’ (36) 

For (d4) there are two energy-orderings for state, in case ko< 0 (kir shown in Fig. 
4, do] so gluon “k’ absorbed by quark, 

- 
&d4A z M 

/ 
du(s - k]s-‘k-l [k - K] -’ [s - S] -’ 

x [s + K - iE-1 -I (37) 

and for case k. > 0, i.e. k’emitted, 

“zd4B = Yi dp(s+k)s-‘k-‘[k-s+iZ]-I[s-K-i?]-’ 

x [s+sl-l (38) 

- The ic in [k - s + i cl-’ in xd4B and in “Kdl are unimportant since the terms 

multiplying [k-s + ic] -1 vanish when k = s. Fig. (d5) has 3 energy-orderings for 

state part, case sb > 0, k. > 0 gives 

2TdSA = Yu l- du(s + k)s-‘k-l [K + S + iE] -I 

x [k+S+iE]-‘[s+S]-I . (39) 
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Re [ “Ad4B + .ii?d5Al = 0 

In case, sb < 0, k. > 0, Fig. (d5) gives 

(40) 

xd5B q 
-M dp(s-k)s-‘k-‘[k+sl-l[K+S+iEl-1 

/ 

x [k+S+iFl-’ (41) 

and for sb> 0, ko< 0 we obtain 

- 
‘“d5c = -X 

I” 
d!& - k)s-‘k-‘[ s - S I-’ [s + k - S - Kl -’ 

x [S+K-iFI-’ 

Using Eqs. (36), (37), (41) and (42) can show 

(42) 

- - - 
Re [Md3 + dd4A + .MdsB + J?d5c I = o (43) 
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IV. CANCELLATION OF REAL GLUON IR DIVERGENCES 

For the cross section to order CL s2r the amplitudes for the process 

“q + 4 + T* + I gluon” as obtained for topological sets e, f, g in Fig. 5 are each to 

be multiplied by the complex conjugate of the order g amplitude for single gluon 

emission, etc. In the coherent state approach, this latter order g bremsstrahlung 

emission amplitude’s IR divergences cancel in IR region in eikonai approximation 

just as in QED. Similarly for “q + 4 + y* + 2 gluons,” the topological set for 2 gluon 

bremsstrahiung from the quark line to order g2 is easily shown to be non-divergent 

in the IR region. 

It is also easy to show that the IR divergences in the amplitudes for each of 

the topological sets in Fig. 5 themselves also cancel in the IR region. Here at most 

one contour integration is necessary. 

For topological set (e), with (a, n, $ emitted 

&ei = &Btbtatb (5 [ 2(2i3ko ] ’ g’$:)(k) sei 

“z 
el = -271 d3Ra-2tL+iEll-‘[k-Kl-’ 

“Fe2 = d3p,Q-2[k-Kl-1[k-L-K-iEl-I (441 

so the sum rf real parts vanishes. 

For set (fl, (b, R, 2) emitted 
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cKfO = -&*tctafabc 2- [ 2(2 ;3k 1 zn7,o (2,j4 TI o i 

Zfo = -i4n / d3s e(k) l s sU2 : (s-)~] -’ 

x [k+S-ic]-’ 

= -+,(r+E) (45) 

For set (h), (a, m, 2) and (b, n, 3 emitted, 

A h0 = +i&Btcfabcg 2 

C 

1 1” 

4(2n)6soko -J 

)I e(s)*e(k)[-s + k]o[(s~)2]-‘[ k +s]-’ 

= -“Kh, (46) 

Set (g) is slightly more complicated because of two energy-orderings. Using 

notation of (do) in Fig. 4 but omitting prime so radiated gluon is (b, n,%, we 

express the amplitudes using 

x (2k)-l [t~+k)~l -+qo)-’ (47) 

For (go) do ko-integration by closing contour below to obtain from gluon propagator 
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- 
.,KgOA = - 

s 
dX(s + k) [s - kl -‘I k + Kl-’ (48) 

and from other pole 

- 
&gOB = 4 

/‘ 
dXk-ls-‘[s-kl-l[s+kl-‘[s+K-icl-’ (49) 

where the “ic” has been omitted in [s - kl -f smce for s = k the term multiplying 

[ s - k I-’ vanishes. For (gl) and (g2) we obtain 

- 
&gl = /- 

dX(s + k) [k + Kl -‘[ s - k - ie I-’ 

- 
dg2 = / 

dA(k - s) [k - Kl-‘[ k + sl -I 

and for (g3), for case “k emitted, 

- 
&g3A = - J 

dA(s + k)[s -k - iEl-‘[s + K - iE1 -I 

and, for & absorbed, 

- 
“Kg30 = - / 

d;\(k - s) [ k - Kl -‘[ s + K - iE1 -’ 

With these amplitudes we can show 

- - 
Re[Jgl +Jfg2 +A -g3A +‘zg3B + agOA + dT@,l : q o . 

(50) 

(51) 

(52) 

(53) 

(54) 
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APPENDIX: DIAGRAM RULES 

Diagram rules for the initial-state are easy to derive using Eqs. (5), (6) and 

(81, (9). These are similar to the momentum space rules of time-order perturbation 

theory except the quark and anti-quark lines remain forward in time because there 

is no fermion-antifermion creation or annihilation. Corresponding to the usual 

QCD Lagrangian 

2 
apAu - avAp - gf. a a abcAt: A: 

-iJ[yp (-iau+gtaAt) +m]$ 

+... 

the vertices needed in the text are: 

(i) gluon (a, m, $) attached to incident quark, p, 

(Al) 

with (t,) + c-t:) for gluon attached to incident antiquark. The energy denominator 

[ i(Eo - En - iF)l -I for n-th intermediate state is obtained by working outward, to 
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right, from broken line separating graph from initial-state with, E. = energy of 

state at broken line, and, En = energy of n-th intermediate state. For gluon of 

momentum i; 

[ i(Eo - EI - icll-’ = [ i(iF-ii)]-’ 

respectively for c absorbed, emitted. At each vertex three-momentum is 

conserved, and the quarks and gluons are on-mass-shell. There is an overall factor 

(il” for each state part where n is order of state part. 

(ii) gluon (a, R, Ll created, and gluons (b, m, 11 and Cc, n, $1 annihilated 

i g fabc 
--m- K V ~“n (+k, TR, rrn)eSe’(k)eSm’(e)e~‘(rn) (A31 

(2~) ~8ko~omol 

with lower signs for (c, n, &l, (b, m, $1 created and (a, !., $1 annihilated. All three- 

momentums point to left. 

(iii) for gluons (a, II, cl, (b, m, 11, (c, n, zl annihilated 

with lower signs for creation. 

In (ii) and (iii), 

V ~vn (k, q, rl = [ guu(k - qjn + gun(q - r),, + g,,n(r - k)vl 

(A41 

and energy denominators are 
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IicE - E , - 31 -I = [i(?koTLosm o-ial -1 , [ ikko : R, 7 no - i?)l-’ 

respectively. 

Rule for quartic vertex is not needed here, but it can be read off of Eq. (14) 

in Ref. 8. 

For Coulomb gauge used in text, “effective vertices” are needed since in 

time-ordered perturbation theory Coulomb gluons contribute via an “instantaneous 

interaction.” We find: 

(a) Coulomb exchange between fermions: 

2 
tctc ZkL 1 [ I (2*)3 (ia 

(A5) 

for 6 and G quarks with Coulomb gluon, 2, from fermion q to p with [i(k*q/q, - 

k*p/po - i?)l-I. This is order g2 effective coupling, so if alone in state it has ‘l(i)’ 

divided by energy denominator” as its coefficient. Here and below, substitute 

(tc) + c-t:) for antiquark. 

(b) For “Y type” radiation by fermion: 

ta 
lZ2 fabc 

(2 rJ3[ 4 ‘l,m,] 
E CT .k *m) 0 

“e(m)(il)*Z(n)(m) i 
I o2 

(A6) 

for Coulomb gluon, ? from fermion p, in which ? creates [annihilates1 transverse 

gluons (c, n, r?i), (b, m, I), with energy denominators respectively 

[i 
i - /iI ?.Q,o*mo+i$?-i~ )I -l , T= Mi + 1) 

0 

and 
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-g 2f 
t abc 

’ (2~)~ [4ko LoI b 
(k + II) “e@)(k)*:(“)@) -!- 

0 1 (a2 (A7) 

for transverse (a, &, c) created and (b, m,d) annihilated with [i(ko- P.,-I:I + 

y_iE) 1 -’ and ; = z - z. 
0 

(c) For gluon radiated by Coulomb gluon exchanged between fermions: 

tctb 
-i g3fabc 

(2~)~‘~ [2kol “2 
(nT3.e @j(k) ’ 1 (;,2G,2 (AS) 

for Coulomb gluons, ; from q, z from p, with transverse (a, ¶,,& created [annihi- 

lated] and ri(k - i(?) 1 + x - I;I + “2 - ia -I and2 = ?z(; +:). 
L O PO PO I 

Diagram rules for non-trivial final-state parts, including diagrams in which 

gluons directly connect initial-state and final-state (i.e. graph part is a “discon- 

nected graph” as in some diagrams in Ref. 8), similarly follow from Eqs. (5) and (7), 

<JI,, / q ;$> <QF 1 Z(f)), and Eqs. (8) and (9). 
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Fig. 1: 

Fig. 2: 

Fig. 3: 

Fig. 4: 

Fig. 5: 

FIGURE CAPTIONS 

Figures 1 thru 4 are the distinct topological sets of diagrams 

which contribute to N in Eq. (11) to order as2 for the process 

“q + q+ y *.I1 Cancellation of IR divergences is found to occur 

separately for each topological set. The open circles denote 

the emission of the hard virtual photon. The Coulomb gluon 

propagator is represented by a broken line, the transverse 

gluon propagator by a wavy line. On-shell particles bridge the 

initial-state, graph, and final-state parts. The two vertical 

broken lines, with small dashes, display the separation of each 

diagram into these three parts. Fig. 1 is the non-Abelian 

topological set, (a). 

Diagrams in topological set (b) with the 3-gluon vertex and 

with transverse gluon emission occurring first on the incident 

quark line. 

Diagrams in topological set (c) with the 3-gluon vertex and 

with transverse gluon absorption occurring second on the 

incident quark line. 

Diagrams in topological set (d) with the 3-gluon vertex and 

with two transverse gluons attached to the incident quark line. 

Topological sets of gluon emission diagrams which contribute 

to N in Eq. (II) to order as2 for the process “q + q + u* + 1 

soft gluon” [sets e, f, gl and for “q + G+ u* + 2 soft gluons” 

[ set h I. 
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